
Implementation and Demonstration of
Unified Link-Layer API

Janne Riihij̈arvi, Matthias Wellens and Petri M̈aḧonen
Department of Wireless Networks, RWTH Aachen University,

Kackertstrasse 9, D-52072 Aachen, Germany
Email: {jar, mwe, pma}@mobnets.rwth-aachen.de

Alain Gefflaut
European Microsoft Innovations Center

Ritterstrasse 23, D-52072 Aachen, Germany
Email: alaingef@microsoft.com

Abstract— The characteristics of wireless links can change
abruptly leading to challenges in achieving stable application
behaviour. However, no common link-layer independent interface
is available to monitor and control wireless links in a convenient
and technology-independent way. Instead, only solutions hand-
tailored for particular technologies or higher-layer middleware
is used today. In this poster we introduce the Unified Link-Layer
API (ULLA) that allows technology- and platform-independent
access to wireless devices to control configurations, monitor the
performance, and register for event notifications. Hereby ULLA
enables efficient cross-layering for diverse applications. We also
describe two prototype implementations, based on Linux and
Windows CE and will demonstrate the latter one together with
a network monitoring tool.

I. I NTRODUCTION

In recent years support for wireless communication has
become more and more commonplace. Additionally, the vari-
ety of available technologies has constantly increased leading
to more and more heterogeneous environments. It is very
common for modern mobile terminals to offer more than
two wireless interfaces. The involved complexity increases
and, e.g., automatic connection management is not an easy
task anymore. Furthermore, APIs to control different network
interfaces vary highly between technologies. In this poster we
present theUnified Link-Layer API(ULLA) as being defined
by the GOLLUM project [1] that offers a common interface
to access parameter settings as well as performance metricsof
different wireless technologies1.

The characteristics of wireless communication systems is in-
herently unstable because of the varying nature of the wireless
channel. Considerable amount of research has been performed
in the area of, e.g., content adaptation or handover controlin
order to cope with these effects and provide stable application
layer performance for good user’s experience. However, one
major problem in this area is the difficulty of gathering link-
layer information in a reliable and consistent way. Due to
this, link-aware applications are rare and if available at all
specifically tailored to certain scenarios. ULLA offers con-
venient query-mechanisms to retrieve link-layer information
in a technology-independent way. Additionally, applications
can register for asynchronous notifications to be informed
upon previously defined events in the environment. This way

1Although we purely focus on wireless communication in this poster, the
ULLA design also fully supports fixed communication.

efficient cross-layering can be implemented and applications
can react as soon as the wireless interface fires the notification.

Another major advantage of the ULLA approach is platform
independence. The same API can be offered on Windows-, and
Linux-based systems as shown by the prototypes discussed
later. The design scales well and also a version for constrained
devices such as wireless sensor nodes is under development.

A. Potential applications

Applications that would benefit from ULLA are diverse.
Besides operating system agents offering connection manage-
ment services, multimedia services using content adaptation
are typical examples. However, also ad hoc routing protocols
and thus entities not working on the application layer can
benefit from ULLA. To the best of our knowledge routing
metrics relying on link performance metrics such as error
ratios were only examined in homogeneous environments but
ULLA would allow to use these enhancements independently
of the underlying technology. Also events such as defined
in the IEEE 802.21 draft standard for media-independent
handover can be implemented using ULLA [2].

II. ULLA A RCHITECTURE

The ULLA architecture is depicted in figure 1. It consists
of two interfaces, theLink User (LU) interface and theLink
Provider (LP) interface. The LUs are applications of all kinds
that use the ULLA and LPs are the abstraction of network
interface cards offering communication facilities. As these
names suggest ULLA works on the abstraction level oflinks
that are provided by LPs and used by LUs. The ULLA Core
connects both and is the main block in the whole framework
managing available links.

In order to interconnect legacy device drivers with ULLA,
Link Layer Adapters(LLAs) are introduced that implement the
technology-independent LP-interface in a technology-specific
way adapted to certain driver characteristics. Future newly de-
veloped device drivers can implement the LP-interface directly
and thus avoid the need for an additional wrapper-entity. The
LLA mainly contains technology-specific implementations for
computing common abstract attributes such as available band-
width. Hence, reliable and optimized measurement algorithms
can be used but LUs and their programmers do not need any
knowledge about these technology-specific details.

Link Provider

802.11
driver

LL Adapter

ULLA Storage
ULLA Query

Processing &
Event handling

ULLA Command
handling

Application,
Link User

Link User Interface

Query(Attribute, qualifier)
Commands

Application,
Link User

Notification
Requests

Notification

...

ULLA
Core

Link Provider

Bluetooth
driver

LL Adapter

Link Provider

GPRS
modem

LL Adapter

Link Provider

Next
generation

ULLA
enabled
driver

Link Provider Interface

Events (Attribute, value)

Update_Request
(Attribute, frequency)

Commands

Query(Attribute)

Fig. 1. ULLA architecture.

The interaction between ULLA and LUs is based on three
mechanisms which are used to control LPs. Commands are
used to trigger actions such as scanning for available links.
These can either be synchronous or asynchronous. Queries are
used by LUs to gather information related to configuration as
well as performance metrics. The usedULLA Query Language
(UQL) is a subset of SQL. This is natural as the ULLA-
internal data modelling is based on a database abstraction
of the communication environment. For example, the query
SELECT linkId FROM ullaLink WHERE txAvailableBitrate>
500000requests the identifiers of all links offering more than
500 kbps.

Using the same kind of UQL-statements LUs can also reg-
ister for notifications on certain conditions. Such a condition
could, e.g., resemble an 802.21-event that later on triggers a
handover action. On the other hand content adaptation capable
multimedia services could request notifications on changesof
delay or throughput. The ULLA notification mechanism is
very flexible because the LU can define its own conditions
using different attributes and thresholds. However, including
reference queries for typical use cases is also feasible.

A. Extendibility

One major requirement for a future-proof API is extendibil-
ity which was taken into account during the ULLA-design
process from the beginning. Upcoming technologies such as
WiMAX, UWB or IEEE 802.20 can be supported by adding
a new class to the object oriented abstraction of different
technologies. Figure 2 shows the taken approach which is
related to the well-known object-oriented principles. Every LP
has to support the mandatory base classullaLink. There is
another base class for security-related parameters which can
optionally be supported.

Technology-independent
base classes ullaLink

securityLink

Classes for families
of standards 80211Link

btLinkcellularLink wsnLink

80216Link

Standard-amendment
classes 80211kLink

btEdrLinkhsdpaLink

80216eLink

80211sLink

Vendor-specific
classes channelBondingLink

btHiddenProfileLink newWsnMacLink

Example LP2 offers
links supporting

ullaLink

80211Link

80211kLink

channelBondingLink

Example LP1 offers
links supporting

m
andatory

ullaLink

mandatory

securityLink

Fig. 2. ULLA link classes.

The further levels as shown in the class hierarchy resemble
technology-specific classes that include attributes and com-
mands that are common to all links based on one technology.
Recently several standard amendments were standardized to
improve some of the existing wireless technologies. Such ex-
tensions are not supported by all devices using this technology
so that these classes form the next level in the hierarchy.
The lowest level of abstraction is used for vendor-specific
functionality that is proprietary but still should be controllable
via ULLA. A vendor can define its own class and support it
via its own LP enabling any LU to take advantage and use this
added functionality. We expect this to be particularly useful
for configuration and diagnostic tools.

Every LP will implement a subset of all available classes
as shown in figure 2 for two examples. However, every link
still has to support the ullaLink base class which ensures that
basic attributes can be accessed in a uniform way. Applications
whose programmers chose to work on this common abstraction
level automatically work unchanged in heterogeneous environ-
ments and are highly portable also because of the platform
independence of ULLA.

III. I MPLEMENTATION AND DEMONSTRATION

We implemented ULLA on several platforms to evaluate
different design options. In this poster we present two rep-
resentative working ULLA versions, one based on a Linux-
platform, the other one using Windows CE. Both use the same
API proving the platform independence.

A. Linux

The Linux-implementation is based on kernel version 2.4.26
and runs on a standard notebook. The ULLA core is mostly
placed in kernel space but some smaller parts such as the UQL-
parser are left in user space. Instead of an existing database
core we designed our own small-footprint solution. The pro-
totype supports WLAN-devices based on the IEEE 802.11b
standard. The respective LLA is based on the wlan-ng open

source device driver [3] for Prism2 and related chipsets.
Implementing the LLA as part of the device driver proofs the
feasibility of future ULLA-enabled drivers.

The memory footprint of the ULLA core including the LLA
is about 185 kBytes which would also be acceptable for mobile
devices. The power consumption read out via standard ACPI-
functions offered by the Linux operating system did not show
any difference during an one hour test no matter whether
ULLA was enabled and running or disabled.

During first performance evaluations we measured the du-
ration of one single query of increasing complexity. The UQL
supports the definition of a validity of the requested attributes.
If the value available from the optional ULLA storage is
newer than the specified validity ULLA will return those
cached values. Otherwise ULLA will forward the query to the
LLA and retrieve up-to-date information. For the latter case
the performance clearly depends on the type of the attribute.
Requests asking for, e.g., 8 attributes that can be answered
by the device driver take up to only 50µs. In contrast,
requests which require firmware access need up to 4 ms for
8 attributes. Even this time is completely acceptable for any
foreseen application.

B. Windows CE

The second implementation runs on various versions of
Windows CE, namely Windows Mobile 2003 and 2005. The
ULLA core was successfully tested on PDAs as well as smart-
phones. On both hardware platforms the setup includes three
wireless interfaces, GPRS, Bluetooth and WLAN, showing the
technology-independence of the ULLA design.

The footprint of the implementation is approximately the
same size as the Linux-implementation and also the power
consumption test showed that ULLA does not overload the
system. The additional power consumption over half an hour
added by an ULLA evaluating notifications every 10 ms was
near to the measurement accuracy of the Windows CE power
management. A simple query asking for, e.g. 2 attributes,
takes approximately 500µs which shows that using ULLA
for multimedia applications is a realistic solution.

C. Demonstration

We would like to show the Windows CE prototype during
the demonstration session. It is based on a mobile device
making it easy to show interested conference participants the
scalability of the chosen approach and allows guests to use the
device themselves. In addition to the PDA and the smartphone
we would require space for one notebook to offer a WLAN
ad hoc network for demonstration purposes. We do not need
Internet access although it would be preferable. In case of
depleting batteries standard continental European power plugs
for both devices would be helpful.

The demonstration application is a network monitoring tool
shown in figure 3. It retrieves information about all available
links from ULLA and offers this information via graphical user
interface. As part of the demonstration we walk the interested
attendees through the source code of the implementation

Fig. 3. Screenshot of the network monitoring demonstration tool using the
Windows CE based ULLA.

step by step to further highlight how easy ULLA is to use.
Additionally, we show a preliminary version of a connection
manager that connects the link offered by the notebook-PC
and configures higher layer protocol settings.

IV. CONCLUSIONS

In this poster we presented the Unified Link-Layer API
(ULLA) for easily retrieving information about available wire-
less links in mobile environments in a technology-independent
manner. The ULLA also supports configuring links and reg-
istering for notifications on changes of link conditions. We
described the design and architecture of ULLA and gave
details about two of the existing ULLA prototypes. We will
demonstrate a network monitoring tool based on the Windows
CE implementation to show parts of ULLA functionality. The
presented Linux implementation is available for download as
open source from [4].

ACKNOWLEDGMENT

We would like to thank DFG (Deutsche Forschungsge-
meinschaft), European Union (the GOLLUM-project, [1]) and
RWTH Aachen University for the financial support. We would
also like to thank the GOLLUM research team for fruitful
discussions.

REFERENCES

[1] IST GOLLUM project website, http://www.ist-gollum.org [Visited Jan. 17,
2006], 2006.

[2] IEEE Computer Society LAN MAN Standards Commitee, “Draft IEEE
Standard for Local and Metropolitan Area Networks: Media Independent
Handover Service,” In IEEE P802.21/D00.01, July 2005.

[3] Absolute Value Systems Inc. (AVS), “wlan-ng driver implementation,”
http://www.linux-wlan.org/ [Visited Jan. 18, 2006].

[4] Open source release of the Unified Link-Layer API, http://ulla.
sourceforge.net/ [Visited Mar. 29, 2006], 2006.

